
Synthesis-Aided Compiler for

Low-Power Spatial Architectures

Phitchaya Mangpo Phothilimthana ,

Tikhon Jelvis, Rohin Shah, Nishant Totla, Sarah Chasins, and Ras Bodik

2

no cache

limited interconnect

spatial & temporal partitioning

unusual ISA
small memory

narrow bitwidth

3

no cache

limited interconnect

spatial & temporal partitioning

unusual ISA

small memory

narrow bitwidth

4

5

no cache

limited interconnect

spatial & temporal partitioning

unusual ISA

small memory

narrow bitwidth

Need a new way of
building a compiler!

6

Synthesis-Aided Compiler

Classical Synthesis-Aided
Approach Apply heuristic

transformations
Find best program in
defined search space

Required
Components

Å Transformations
Å Legality analysis
Å Heuristics

Å Defined search space
Å Equivalence checker
Å Abstract cost function

/ÕÔÐÕÔȭÓ
Performance

Depends on heuristic quality Optimal in defined search space

Building Effort High Low

7

Classical vs. Synthesis Compiler

Case study: GreenArrays Spatial Processor

Specs

Å Stack-based 18-bit architecture

Å 144 tiled cores

Å Limited communication
(neighbors only)

Å No cache, no shared memory

Å < 300 bytes of memory per core

Å 32 instructions

Example challenges of programming
spatial architectures like GA144:

Å Bitwidth slicing: Represent 32-bit

numbers by two 18-bit words

Å Function partitioning: Break functions
into a pipeline with just a few
operations per core.

GA144 is 11x faster and simultaneously
9x more energy efficient than TI MSP 430.

On FIR benchmark, [Avizienis, Ljung]

8

